Enhancement of erythropoietin-stimulated cell proliferation by Anandamide correlates with increased activation of the mitogen-activated protein kinases ERK1 and ERK2.
نویسندگان
چکیده
INTRODUCTION Anandamide (ANA) is an endogenous ligand for the cannabinoid receptors Cb1 and Cb2 that is able to synergistically stimulate the proliferation of hematopoietic growth factor-dependent blood cells in serum-free culture. To elucidate the mechanisms by which ANA enhances the proliferative responses of hematopoietic cells, we investigated the ANA-mediated effects on proliferation, cell cycling, apoptosis and intracellular signaling of erythropoietin-stimulated 32D/EPO cells. MATERIALS AND METHODS 32D/EPO cells were cultured serum free to determine the effects of EPO and anandamide on these cells. Proliferation was analyzed by tritiated thymidine incorporation. Apoptosis as well as cell cycle analysis was carried out by flow cytometry. MAPKinase activation was determined by Western blotting, using phospho-specific MAPK antibodies. RESULTS Simultaneous addition of erythropoietin (EPO) and ANA enhanced DNA synthesis and increased 32D/EPO cell numbers in serum-free culture. Interestingly, ANA did not alter the G1/S transition but it accelerated each of the successive cell cycle phases of EPO-stimulated 32D/EPO cells. Percentages of apoptotic 32D/EPO cells were equally low in cultures supplemented with EPO alone or a combination of EPO and ANA. Both cultures showed enhanced activation of two mitogen-activated protein kinases, namely, extracellular factor responsive kinases 1 and 2 (ERK1/2), as well as the MAPK-target gene protein c-Fos. This fully correlated with the synergistic stimulation of proliferation of 32D/EPO cells by EPO and ANA. ANA had no effect on EPO-induced STAT-5 activation of 32D/EPO cells. Experiments with the Cb2 receptor-specific antagonist SR144528 demonstrated that the synergistic stimulation of proliferation by ANA was partially Cb2 receptor-mediated. CONCLUSION These data suggest that the positive effects of ANA on the erythropoietin-induced proliferation of 32D/EPO cells are mediated by receptor-dependent as well as receptor-independent mechanisms, both of which involve activation of the mitogen-activated protein kinases, ERK1/2.
منابع مشابه
ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially
BACKGROUND The mitogen-activated protein (MAP) kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus....
متن کاملExtracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain.
The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylat...
متن کاملHydrogen peroxide stimulates extracellular signal-regulated protein kinases in pulmonary arterial smooth muscle cells.
Hydrogen peroxide (H2O2) has emerged as an important intracellular signaling molecule and has been shown to stimulate the growth of vascular smooth muscle cells. Activation of p44 and p42 extracellular signal-regulated protein kinases (ERK1 and ERK2) is an important step in the cascade leading to cell growth and proliferation. In the present study, we investigated the effects and mechanisms of ...
متن کاملATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways.
Vascular smooth muscle cells respond to the purinergic agonist ATP by increasing intracellular calcium concentration and increasing the rate of cell proliferation. In many cells the extracellular signal-regulated kinase (ERK) cascade plays an important role in cellular proliferation. We have studied the effect of extracellular ATP on ERK activation and cell proliferation. ATP binding to a UTP-s...
متن کاملExtracellular signal-regulated kinase 2 is necessary for mesoderm differentiation.
The extracellular signal-regulated kinase (ERK) is a component of the mitogen-activated protein kinase cascade. Exon 2 of erk2 was deleted by homologous recombination and resulted in embryonic lethality at embryonic day 6.5. erk2 mutant embryos did not form mesoderm and showed increased apoptosis but comparable levels of BrdUrd incorporation, indicating a defect in differentiation. erk2 null em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The hematology journal : the official journal of the European Haematology Association
دوره 1 4 شماره
صفحات -
تاریخ انتشار 1994